
5/10/2020 Final Review

localhost:8888/nbconvert/html/Dropbox/SEAS2019/Spring Semester/Data Structure/Final/Final Review.ipynb?download=false 1/18

Binary Tree

Definitions

a binary tree is full if every non-leaf node contains 2 children (i.e. every node has 0 or 2 children)
a binary tree is complete have all levels completely filled except possibly the last level, and the last level has all nodes as left as possible
a perfect Binary tree have all internal nodes filled two children, and all leaves are at the same level. A perfect binary tree is also full.

Height and size

the maximum height of a binary tree with n nodes is
the minimum height of a binary tree with n nodes is
the minimum number of nodes in a binary tree with height h is
the maximum number of nodes in a binary tree with height h is

n − 1
O(log(n))

h + 1

− 12h+1

Binary Search Tree
Now, since we have a Seach tree, we need some sort of orderings inside the tree. All the nodes on the left subtree must be smaller than the parent/root node
(recursively). All the nodes on the right subtree must be larger than the parent/root node.

Methods

contains() / insert() / findMin() / findMax()
Cost Analysis

if we have a balanced/complete/perfect binary Search tree, then the complexity is
if we have a full binary Search tree, then the complexity (in the worst case) is

remove()
To find that node, it takes the same cost as contains() . Then it depends on the height of the node being removed
if that node has only one child, just shift the child up.
if the node has two children, replace that node with either have the largest on the left subtree or the smallest on the right subtree. It works nicely
because that node will only have one child. Then, you replace that node's original position itself with children (and the only children).

O(height) = O(log(n))
O() = O(n)n

2

In []: /**
* Note that it returns the root BinaryNode. This is to prevent the case
* when the tree is empty, so that the root changes. Note its the NODE
* that changed, hence we need rewindings
*/

private BinaryNode<AnyType> insert(AnyType x, BinaryNode<AnyType> t){
 // base case: node does not exist, so we REPLACE the null node to a
 // new BinaryNode
 if(t == null)
 return new BinaryNode<>(x, null, null);

 int compareResult = x.compareTo(t.element);

 // looks similar to the contains() method, but it is quite different
 // it actually rewinds the ENTIRE Tree
 if(compareResult < 0)
 // inserting in the left subtree
 t.left = insert(x, t.left);
 else if(compareResult > 0)
 // inserting in the right subtree
 t.right = insert(x, t.right);
 else
 // Duplicate; do nothing

 // this is necessary, as we need to give the node back
 return t;

}

5/10/2020 Final Review

localhost:8888/nbconvert/html/Dropbox/SEAS2019/Spring Semester/Data Structure/Final/Final Review.ipynb?download=false 2/18

In []: private BinaryNode<AnyType> remove(AnyType x, BinaryNode<AnyType> t){
 if(t == null)
 return t; // Item not found; do nothing

 int compareResult = x.compareTo(t.element);

 if(compareResult < 0)
 t.left = remove(x, t.left);
 else if(compareResult > 0)
 t.right = remove(x, t.right);
 // now the node is found
 else if(t.left != null && t.right != null) // Two children
 {
 // replace the VALUE with the minimum of the right sub-tree
 // we did not actually remove anything
 t.element = findMin(t.right).element;
 // then remove that replaced node from below, which MUST have
 // either one or zero children
 t.right = remove(t.element, t.right);
 }
 else
 t = (t.left != null) ? t.left : t.right; // one or zero children
 return t;

}

In []: private BinaryNode<AnyType> findMin(BinaryNode<AnyType> t){
 if(t == null)
 return null;
 else if(t.left == null)
 return t;

 // tail recursion, when the very last return is the recursive call
 // in general, tail recursion is easy to rewrite into a while loop
 return findMin(t.left);

}

In []: private boolean contains(AnyType x, BinaryNode<AnyType> t){
 if(t == null)
 return false;

 int compareResult = x.compareTo(t.element);

 if(compareResult < 0)
 return contains(x, t.left);
 else if(compareResult > 0)
 return contains(x, t.right);
 else
 return true; // Match

}

Expression Tree
Algorithm

everytime when we get an operand, you push the nodes into the stack
everytime when we get an operator, you pop TWO of the top nodes in the stack
AFTER YOU POP the two operand nodes, you PUSH the node of the operand back in the stack (Note that now you constructed a subtree
where the opertor will be the parent nodes)
finally, if there is no more operator/operands in the given expression, you pop the stack and you will get the ROOT of the tree

Post-Fix using Expression Tree
because the tree is constructed using stack, which means first in last out, we need post-order traversal to get the expression out in sequence and in
post-fix

In []: public int evaluate(Node t){
 if(t.left == null && t.right == null){
 return t.operand;
 }
 int leftVal = evaluate(t.left);
 int rightVal = evaluate(t.right);

 // apply method does the corresponding mathematical operation
 // note that this t is at an upper level than the t in the if statement above
 // @returns an integer value after the mathematical expression
 return apply(t.operator,leftValue,rightValue);

}

5/10/2020 Final Review

localhost:8888/nbconvert/html/Dropbox/SEAS2019/Spring Semester/Data Structure/Final/Final Review.ipynb?download=false 3/18

AVL Tree
if we can have a balanced binary tree, such that if the height of every left subtree differs no more than 1 with the height of the right subtree, then the worst
case operation cost will be O(2log(n)) ≈ O(log(n))

Properties

any AVL Tree is a Binary Tree
fulfills the AVL Condition, or the Balance Condition, which says that for every node, the height of a left subtree cannot differ from the right subtree by
more than one

Checking Algorithm

We need to have a recursive algorithm that keeps track of the height of the subtree. This could be expensive, but one solution is that we add an additional
field in the node, namely the private int height

In []: private int checkBalance(AvlNode<AnyType> t){
 // if that subtree itself does not exist
 if(t == null)
 return -1;

 // recursion
 if(t != null)
 {
 int hl = checkBalance(t.left);
 int hr = checkBalance(t.right);
 if(Math.abs(height(t.left) - height(t.right)) > 1 ||
 height(t.left) != hl || height(t.right) != hr)
 System.out.println("OOPS!!");
 }

 return height(t);
}

Balancing Algorithm

it can only occur at a subtree with 3 nodes in a row
rotations will have the aim of putting the median to be the new root of the subtree

case 1: Zig-Zig
Single Rotation the median/middle node up

careful of the secondary rewindings
use the fact that it is a Binary Tree, left node is always smaller than parent

case 2: Zig-Zag
the median is not in the middle
Double Rotation

first rotate the median up to the middle
then Single Rotation

careful of the secondary rewindings
use the fact that it is a Binary Tree, left node is always smaller than parent

5/10/2020 Final Review

localhost:8888/nbconvert/html/Dropbox/SEAS2019/Spring Semester/Data Structure/Final/Final Review.ipynb?download=false 4/18

In []: // Assume t is either balanced or within one of being balanced
private AvlNode<AnyType> balance(AvlNode<AnyType> t){
 if(t == null)
 return t;

 // first, determine if there is an imbalance or not
 // if so, which way is the imbalance

 // notice that we are using the height method instead of the field height
 // this is because we want to avoid the issue of asking for the height of null object
 if(height(t.left) - height(t.right) > ALLOWED_IMBALANCE)
 // Zig-Zig. Hence single rotation
 if(height(t.left.left) >= height(t.left.right))
 t = rotateWithLeftChild(t);
 // Zig-Zag. Hence double rotation
 else
 t = doubleWithLeftChild(t);
 else if(height(t.right) - height(t.left) > ALLOWED_IMBALANCE)
 // Zag-Zag. Hence a single rotation
 if(height(t.right.right) >= height(t.right.left))
 t = rotateWithRightChild(t);
 else
 t = doubleWithRightChild(t);

 // updates the height. Other updates are done inside rotateWithLeftChild methods
 t.height = Math.max(height(t.left), height(t.right)) + 1;
 return t;

}

In []: // single rotation of the node itself with the left child
private AvlNode<AnyType> rotateWithLeftChild(AvlNode<AnyType> k2){
 AvlNode<AnyType> k1 = k2.left;
 k2.left = k1.right;
 k1.right = k2;
 // the height of k1 and k2 has changed
 k2.height = Math.max(height(k2.left), height(k2.right)) + 1;
 k1.height = Math.max(height(k1.left), k2.height) + 1;
 // the new subtree node
 return k1;

}

In []: // the double rotation for Zig-Zag
private AvlNode<AnyType> doubleWithLeftChild(AvlNode<AnyType> k3){
 // first single rotation of the left child with the left right child
 k3.left = rotateWithRightChild(k3.left);
 // another single rotation of the child and the left child which is rotated
 return rotateWithLeftChild(k3);

}

HashTable
then when you want to find() an object, you apply the hash function to that object, and just look up at that position

note the problem would be collision, which can happen
HashTable basically does the same thing as a HashSet, which inherits the Set interface. Both are essentially a mathemtical set.
HashTable only insert key, which has to be unique (a set), but not value (as compared to python dictionaries and Java HashMap where both are
inserted)

Special Java Hash Functions

Note that after every hash function, you need to mod by tableSize

int has hash functions being themselves,
Object has hash function being their memory address
String has hash function being its content

hash(x) = x

Rehash

Create a new HashTable and rehash every thing we had into the new table (not just copying, since the MOD factor changed)

Rehash operation of order , , and notice that during that rehash we do not need to check contains() since whatever was
in the table cannot be duplicates
also, since we need to keep the tableSize to be prime for minimizing collision

O(n) = O(N) N = tableSize

5/10/2020 Final Review

localhost:8888/nbconvert/html/Dropbox/SEAS2019/Spring Semester/Data Structure/Final/Final Review.ipynb?download=false 5/18

Seperate Chaining

where each index position is a head node with a link
rehash() when λ > 1

Cost Analysis
since we have a LinkedList implementation, we will have for insert() / contains() and remove() , where is the number of elements
inside that position's LinkedList
but, if we have , the average cost of insert() / contains() and remove() is

O(k) k

λ ≤ 1 O(1)

In []: public void insert(AnyType x){
 // first find the list
 List<AnyType> whichList = theLists[myhash(x)];
 // if that list does not have that element
 if(!whichList.contains(x))
 {
 // just add it at the end
 whichList.add(x);

 // Rehash if loadFactor is greater than 1; see Section 5.5
 if(++currentSize > theLists.length)
 rehash();
 }

}

In []: public boolean contains(AnyType x){
 // first get that position's linked list
 List<AnyType> whichList = theLists[myhash(x)]; // this myhash function actually also MOD by tableSize
 return whichList.contains(x);

}

Probing

In general, we will have , where is the probing function, starting with

The same probing will be used for insert() , remove() , contains()

For most probing implementations, we keep

for Quadratic Probing, see proof on Lecture15
you basically start with the idea that:

 and are distinct (so that, for example. probe does not wrap around and equals to probe) if:

(x) = (hash(x) + f(i))% tableSizehi h)i(x) ith i = 0

λ < 0.5

(x)hi (x)hj h7 h1

TS = prime

λ ≤ 0.5

Linear Probing
where we have
where we would encounter Primary Clustering, which means you have nearly every element shifted in the array

Quadratic Probing
where we have

this gets us away from Primary Clustering, as we spread out more
however, there is a constraint: to guarantee that an item is always insertable, we need , and the tableSize has to be a prime (>2)

otherwise, it is possible that your probing gets you stuck at an infinite cycle

f(i) = i

f(i) = i2

λ < 0.5

Lazy Deletion for remove()
this is used quite often in implementations. We cannot directly delete the element in probing, because it breaks the probing scheme
so lazy deletion works, but need to care that:

contains() changes slightly as we need to check the boolean deleted as well
insert() encounters the greatest problem. As you still could encounter the problem of duplicate in later position while you have an empty spot

here
as a reult, the only time you can be assured to overwrite that spot would be inserting the same element at that spot (the most inexpensive
operation). So this would cause a waste a space

5/10/2020 Final Review

localhost:8888/nbconvert/html/Dropbox/SEAS2019/Spring Semester/Data Structure/Final/Final Review.ipynb?download=false 6/18

In []: // quadratic probing implementation
private void rehash(){
 HashEntry<AnyType> [] oldArray = array;

 // Create a new double-sized, empty table
 allocateArray(2 * oldArray.length);
 occupied = 0;
 theSize = 0;

 // Copy table over, REINSERTING EVERYTHING
 for(HashEntry<AnyType> entry : oldArray)
 if(entry != null && entry.isActive) // skipping the lazy deleted one as well
 insert(entry.element);

}

In []: private int findPos(AnyType x)
{
 // actually stores the relative location, for more efficiency
 int offset = 1;
 // the first step
 int currentPos = myhash(x);

 // if either of these two conditions are true, continue moving
 while(array[currentPos] != null &&
 !array[currentPos].element.equals(x))
 {
 currentPos += offset; // Compute ith probe
 offset += 2; // the DIFFERENCE between the currentPosition will always be 2 less than the next Probe positi

on
 // this is just to wrap around back to the array's beginning
 if(currentPos >= array.length)
 currentPos -= array.length;
 }

 // whereever it stops, it must be either an emptyPosition or you found it
 return currentPos;

}

In []: public boolean insert(AnyType x){
 // Insert x as active
 int currentPos = findPos(x); // first find that position
 // if it is active (not lazy deleted), means it is duplicate, do nothing
 if(isActive(currentPos))
 return false;

 // only when that place is actually empty, you increase occupied
 if(array[currentPos] == null)
 ++occupied;
 // now, no matter what case it is (empty or inActive), you make that element ot be active
 array[currentPos] = new HashEntry<>(x, true);
 theSize++;

 // Rehash, since it is quadratic probing, rehash when half the size; see Section 5.5
 if(occupied > array.length / 2)
 rehash();

 return true;
}

In []: // lazy deletion
public boolean remove(AnyType x){
 int currentPos = findPos(x);
 if(isActive(currentPos))
 {
 // Lazy Deletion
 array[currentPos].isActive = false;
 theSize--;
 return true;
 }
 else
 return false;

}

HashMap
Very similar to dictionaries in Python, where there contains key and value pairs. In a HashMap:

key are unique and cannot be duplicates
value can be duplicates
look up operations only work for key, not on value

therefore, hash functions are only applied to key

5/10/2020 Final Review

localhost:8888/nbconvert/html/Dropbox/SEAS2019/Spring Semester/Data Structure/Final/Final Review.ipynb?download=false 7/18

PriorityQueue/ Heap
dequeuing things based on some assigned priority number

note that PriorityQueue are not sets. They can all have the same priority number.
here, we just assume that the elements inserted are implementing Comparable

BinaryHeap

a MinHeap, because we are deleting Min

one way we could implement this is using a BinaryTree (not search tree, because that is a set)
we need this tree to be Complete (filled from left to right)

Note that a Complete binary tree is Balanced
and we need to maintain a way to move back up the tree

which is done by the array
we need to hold the heap order condition at every node

heap order: each node must be less than or equal to its children
this means that the minmum will always be the root node

Array Based BinaryHeap

build using a level order traversal of the tree
item 0 will be left empty intentionally

Properties of this Implementation

 will be now the index of the node
 will be the left child of the node

 will be the right child of the node
size will always be the index of the last node

therefore, you could use it to detect whether if a node is a leaf node by looking at if it has a left child by doing the calculation above and comparing it
with size

 will be the parent of a node (in Java integer division is floored)

the root node will always have
there are no gaps inside the array, because this tree is complete

i

2 × i ith

2 × i + 1 ith

i

2

= 01
2

Methods

buildHeap(Array arr)

one way to implement this with is to start at the last non-leaf child, which would be at , and then percholateDown()
then after this level is completed, we move up a level and perchoalteDown()
Notice now, everytime we do percholate down, we only swap for height of the current parent node times. Therefore, the total number of
swaps/operations we did was the

O(N)
length

2

∑ heights = O(N)

deleteMin()
deleting is fast, but we need to maintain the heap order
this is done by letting the last element to be the new root

so that this is still complete
and then we percholateDown() all the way
this will be O(log(N))

insert()
first put the element at the last position of the array, so that the complete condition is fulfilled
then we perchoalteUp() until the heap order is satisfied
this will be O(log(N))

percholateUp()
this is actually not implemented specificially, because it is only used when we use buildHeap()
this is also simple. Simply swap with parent if it is smaller.

5/10/2020 Final Review

localhost:8888/nbconvert/html/Dropbox/SEAS2019/Spring Semester/Data Structure/Final/Final Review.ipynb?download=false 8/18

percholateDown()
if it is smaller than both children, then break
if it is smaller than one child, then swap with that
if it is smaller than both, swap with the smaller child
then it continues

In []: private void buildHeap(){
 // just walk backwards, starting from the last/rightmost interior child and move left
 for(int i = currentSize / 2; i > 0; i--)
 percolateDown(i);

}

In []: public void insert(AnyType x){
 if(currentSize == array.length - 1)
 enlargeArray(array.length * 2 + 1);

 // Percolate up, start with last spot
 int hole = ++currentSize;
 // note position 0 is temporary holder. This way of setting up also stops the loop correctly
 // and hole/2 is the parent of the hole
 for(array[0] = x; x.compareTo(array[hole / 2]) < 0; hole /= 2)
 // swaping the parent value down, so the HOLE percholates up
 array[hole] = array[hole / 2];
 // after the loop, the stopping position of hole is where you insert
 array[hole] = x;

}

In []: public AnyType deleteMin(){
 if(isEmpty())
 throw new UnderflowException();

 AnyType minItem = findMin();
 // filling the root with the last item
 array[1] = array[currentSize--];
 // then re-order it using percholate down
 percolateDown(1);

 return minItem;
}

In []: private void percolateDown(int hole) // hole is the position where we have the wrong thing
{
 int child; // it will either be the index of the only child, or the smaller of the two
 AnyType tmp = array[hole];

 for(; hole * 2 <= currentSize; hole = child) // hole*2 > currentSize means it is a leaf
 // we also set the hole=child at the end of every loop as well
 {
 // first set the child to be the left children
 child = hole * 2;
 if(child != currentSize && //if child is not the last element
 array[child + 1].compareTo(array[child]) < 0) // and if right child is smaller
 child++;
 // now, child is guaranteed to be the smaller of the two children
 if(array[child].compareTo(tmp) < 0) //now you either swap or not swap/break out of the loop
 array[hole] = array[child];
 else
 break;
 }
 array[hole] = tmp;

}

Comparison Based Sorting
Usually

Selection Sort
Insertion Sort

Both keeps one part of the array being sorted, and the other part unprocessed

O()N 2

5/10/2020 Final Review

localhost:8888/nbconvert/html/Dropbox/SEAS2019/Spring Semester/Data Structure/Final/Final Review.ipynb?download=false 9/18

SelectionSort

 in all cases

Algorithm
looks for the smallest element in the unsorted array
insert that element to the last place of the sorted part
continues

O()N 2

InsertionSort

The best case is that we are given an already sorted array.

in this case, we only check forward, as they are sorted, and no swaps are done
therefore, we have

The worst case is that we are given a reverse ordered array

every element needs to swapped to its maximum effect
so we get

O(N)

1 + 2 + 3+. . +N − 1 = O()N 2

Algorithm
continously insert the next/first element from the unsorted array into the sorted part
swap with left if it is smaller
continues

In general, insertion sorts will be preferred for small amount of data as compared to other recursive algorithms, which in general has quite a
large constant factor attached in front

O(Nlog(N))

In []: public static <AnyType extends Comparable<? super AnyType>> void insertionSort(AnyType [] a){
 int j;

 for(int p = 1; p < a.length; p++)
 {
 // storing the element that needs to be compared
 AnyType tmp = a[p];
 for(j = p; j > 0 && tmp.compareTo(a[j - 1]) < 0; j--)
 // if need to swap, move the wrong element to the right
 a[j] = a[j - 1];
 // if not, then place the value there
 a[j] = tmp;
 }

}

Divide and Conquer Sorting
In general these would be

MergeSort
QuickSort

O(Nlog(N))

MergeSort

Algorithm
first, the base case would be that you have an array of size , and therefore nothing happens
then, invoke mergeSort() on the first half of the array a, and another on the other half, assuming that the algorithm works

int[] a1 = mergeSort(1st half of a);
int[] a2 = mergeSort(2nd half of a);

finally, we need to merge the two sorted array at linear time
which is done by having two pointers moving at different speed

return merge(a1,a2);

1

5/10/2020 Final Review

localhost:8888/nbconvert/html/Dropbox/SEAS2019/Spring Semester/Data Structure/Final/Final Review.ipynb?download=false 10/18

In []: private static <AnyType extends Comparable<? super AnyType>> void mergeSort(AnyType [] a, AnyType [] tmpArray,
 int left, int right){
 // otherwise we have size 1 or 0
 if(left < right)
 {
 int center = (left + right) / 2;
 mergeSort(a, tmpArray, left, center);
 mergeSort(a, tmpArray, center + 1, right);
 merge(a, tmpArray, left, center + 1, right);
 }

}

private static <AnyType extends Comparable<? super AnyType>> void merge(AnyType [] a, AnyType [] tmpArray, int l
eftPos,
 int rightPos, int rightEnd){
 int leftEnd = rightPos - 1;
 int tmpPos = leftPos;
 int numElements = rightEnd - leftPos + 1;

 // Main loop
 while(leftPos <= leftEnd && rightPos <= rightEnd)
 if(a[leftPos].compareTo(a[rightPos]) <= 0)
 tmpArray[tmpPos++] = a[leftPos++];
 else
 tmpArray[tmpPos++] = a[rightPos++];

 while(leftPos <= leftEnd) // Copy rest of first half
 tmpArray[tmpPos++] = a[leftPos++];

 while(rightPos <= rightEnd) // Copy rest of right half
 tmpArray[tmpPos++] = a[rightPos++];

 // Copy tmpArray back
 for(int i = 0; i < numElements; i++, rightEnd--)
 a[rightEnd] = tmpArray[rightEnd];

}

QuickSort

Worst case degrades to

this happens when the pivot is always the min/max, so that partitioning gives pretty much only 1 array instead of 2

Average case it is

O()N 2

O(Nlog(N))

Algorithm
pick a pivot

if we use MedianOfThree pre-partition, then at this stage the smaller will go position , largest to , pivot to
partition/order the array into two parts, one part smaller than the pivot, the other larger than the pivot
recursively deal with the two partitioned parts, until less than 3 elements are met

0 length length − 1

Parition Algorithm
have two pointers at two ends
increment until it is at the wrong position
increment until it is at the wrong position
if crossed , break
if not, swap, and continue the increment/decrement

i

j

i j

5/10/2020 Final Review

localhost:8888/nbconvert/html/Dropbox/SEAS2019/Spring Semester/Data Structure/Final/Final Review.ipynb?download=false 11/18

In []: private static <AnyType extends Comparable<? super AnyType>> AnyType median3(AnyType [] a, int left, int right){
 int center = (left + right) / 2;

 // it not only finds the median, but also pre-sort the three elements
 // notice this is the same idea for InsertionSort
 if(a[center].compareTo(a[left]) < 0)
 swapReferences(a, left, center);
 if(a[right].compareTo(a[left]) < 0)
 swapReferences(a, left, right);
 if(a[right].compareTo(a[center]) < 0)
 swapReferences(a, center, right);

 // Place pivot at position right - 1
 // remember the figure we drew, so that we have
 // the smallest on the left most
 // the median at right-1
 // the largest at right
 swapReferences(a, center, right - 1);

 // so that pivot is out-of-place at right-1, whcih is restored later
 return a[right - 1];

}

In []: private static <AnyType extends Comparable<? super AnyType>> void quicksort(AnyType [] a, int left, int right)
{
 // so that the sub-array we need to deal with is larger than 3
 if(left + CUTOFF <= right)
 {
 AnyType pivot = median3(a, left, right);

 // Begin partitioning
 // though this seems wrong, but in the loop, we did ++i and --j, so its the same
 int i = left, j = right - 1;
 for(; ;)
 {
 // move i until it is at the wrong position
 while(a[++i].compareTo(pivot) < 0) { }
 // move j until it is at the wrong position
 while(a[--j].compareTo(pivot) > 0) { }

 // if i did not cross j, we swap and continue the loop
 if(i < j)
 swapReferences(a, i, j);
 // otherwise, we break and finish
 else
 break;
 }

 swapReferences(a, i, right - 1); // Restore pivot

 // then we just recursively sort the rest
 quicksort(a, left, i - 1); // Sort small elements
 quicksort(a, i + 1, right); // Sort large elements
 }
 else // Do an insertion sort on the subarray
 insertionSort(a, left, right);

}

Graph
A set of edges/links connecting a set of vertices

Definitions and Terminologies

a sparse graph is when the number of edges is upperbounded by the number of vertices
so that

a dense graph is when the number of edges is upperbounded by the number of vertices squared
so that (the case when a vertex has an edge connected to every other vertex, mathematically it will be)
so that every vertex has one edge to any other vertex

|E| = O(|V |)

|E| = O(|V)|2 (|V | − 1)2

a directed graph, or digraph, is defined as Graph with only directed edges
an undirected graph is defined to as Graph with only undirected edges
we will not be using hybrid graphs

5/10/2020 Final Review

localhost:8888/nbconvert/html/Dropbox/SEAS2019/Spring Semester/Data Structure/Final/Final Review.ipynb?download=false 12/18

a path would be the sequence of nodes/vertices that we follow to go from one vertex to another
a simple path is when each vertex in the sequence is distinct, in other words, no cycles

the length of the path would be the number of edges traversed
for example, edges connecting vertices have a length of path of 3 4 3

a loop is having an edge directly connecting to itself
fore example:

a cycle is when after visting other vertices in a path, the same vertex gets visited again
for example:

−V1 V1

− − −V1 V3 V2 V1

an acylic graph is when the Graph does not have any cycles represent
basically when each vertex is linked only once
for example, a Tree would be acyclic

a DAG, or a directed acyclic graph is when you satisfy both a directed graph and an acyclic graph
this is quite often encountered so there is an abbreviation given

a connected graph, is a graph has each vertex reachable from every other vertex
this is most easily achieved for an undirected graph

a strongly connected graph would be a connected graph but also directed
a weakly connected graph would be strictly speaking disconnected if we take into account the direction ONLY

however, if we ignore the directions, a weakly connected graph would be a connected graph

Examples of Graphs

the Trees, especially the BinarySearch Tree, is a directed graph
we can go down from parent to child, but not going up

the BinaryHeap is an undirected graph
because we can easily go up and down using the indices in the array

Representations of a Graph

Adjacency Matrices
a space complexity of
we have one side as source vertex, the other as destination vertex

O()N 2

5/10/2020 Final Review

localhost:8888/nbconvert/html/Dropbox/SEAS2019/Spring Semester/Data Structure/Final/Final Review.ipynb?download=false 13/18

Adjacency List
this will have a better spacial complexity

therefore, even in the case of dense graph, we have
where each vertex has a LinkedList storing the vertices that it can reach
using the previous example, it looks like this

notice that the number of elements in each LinkedList corresponds to the number of edges
therefore, the sum of the sizes of the LinkedLists are
however, since the leading node is the vertex itself, we also have

|V | + |E|

|V | + |V = O(|V)|2 |2

|E|
|V |

Topological Sort
Having a directed graph (DAG, actually), and needs a way to visit all vertices. Do not have to follow the sequence on the graph

Terminolgies and Definitions

indegree
the number of edges that terminates at a vertex

in fact, this sorting only works for DAGs, because
if you have a cyclic graph, then you cannot find a starting point to a class

Algorithm
start at a vertex with indegree 0
then update all vertices it can reach with indegree--
then visit the next vertex with indegree 0
continues until all vertices are visited

Cost Analysis
If using Queue

we will have
for dense graph, it will stil be , but
for sparse graph, it takes only

O(|E| + |V |)

O(|V)|2

O(|V |)

5/10/2020 Final Review

localhost:8888/nbconvert/html/Dropbox/SEAS2019/Spring Semester/Data Structure/Final/Final Review.ipynb?download=false 14/18

In []: void improvedTopSort() throws CycleFoundException{
 Queue<Vertex> q = new Queue<Vertex>();
 int counter = 0;

 // this still takes |V|
 for each Vertex v:
 if(v.indegree == 0){
 q.enqueue(v)
 }

 while(!q.isEmpty()){
 // automatically gets a vertex of 0 indegree
 // reduces the cost to be constant time here
 Vertex v = q.dequeue();
 // this tells us the sequence of visit
 v.topNum = ++counter;

 // this part is still the same, but we add a vertex of indegree of 0 to the queue
 // this takes |E| in total, the same
 for each Vertex w adjacent to v:
 if (--w.indegree == 0){
 q.enqueue(w);
 }
 }

 if (counter != NUM_VERTICIES){
 throw new CycleFoundException();
 }

}

Single Source Unweighted Shortes Path
Basically uses a breath-first approach to go through all vertices in the adjacency list, kind of similar to Dijkstra's Algorithm. Once finished, we also know the
shortes path pairs within the same path.

Cost Analysis
if using Queue

 since it is breadth-first
so for Dense Graph, it will be =
for a Sparce Graph, it will be =

Algorithm
initialization: marks everything as unvisited, and set each Dv field to max. Then set the source Dv to 0 and visted

same as Dijkstra's Algorithm
visit every vertex it can reach, and update those Pv fields and Dv fields incrementally

notice, here every distance will be the same
then push() those vertices into a Queue
pop() and continues the loop

O(|V | + |E|)

O(|V | + |V)|2
O(|V)|2

O(|V | + |V |) O(|V |)

Data Chart
we will use this for retrieving the shortest path once computation is finished

Vertex Known/Visted Dv/Distance Pv/Previous

True

True

True N/A

True

True

True

True

V1 1 V3

V2 2 V1

V3 0

V4 2 V1

V5 3 V2

V6 1 V3

V7 3 V4

5/10/2020 Final Review

localhost:8888/nbconvert/html/Dropbox/SEAS2019/Spring Semester/Data Structure/Final/Final Review.ipynb?download=false 15/18

In []: void unweighted(Vertex s){
 Queue<Vertex> q = new Queue<Vertex>();

 for each Vertex v{
 v.dist = INFINITY;
 }

 s.dist = 0;
 q.enqueue(s);

 // ends smarter than the case before

 // this will happen |V| times
 while(!q.isEmpty()){
 // this happens constantly
 Vertex v = q.dequeue();

 // this happens exactly |E| times
 for each Vertex w adjacent to v{
 // not enqueuing things that have already visited
 if(w.dist == INFINITY){
 w.dist = v.dist+1;
 w.pv = v;
 // level order traversal
 q.enqueue(w);
 }
 }
 }

}

Single-Source Weighed Shortest Path / Dijkstra's Algorithm
In this case for a weighted graph, Greedy Algorithm actually works, if the weights are non-negative

Algorithm
same initializatio process as for unweighted graph
vistit each reachable vertices and update the field

update Dv only when it is smaller
but not update visted, yet

then we take the greedy step of marking the unvisited vertex with current smallest Dv to be visited
continues with that vertex

Cost Analysis
if we used linear scanning

this will have a cost of
if we used a Priority Queue for finding the smallest vertex

The total cost is , because is the only "variable"
this means in a sparce graph, we would have an improvement for
but in a dense graph, we would have

this is because:
the loop for search gives , but comes with a cost
now, the inner loop is not , because if we just reassigned the value of a vertex, it might disturb the heap order. This means we need
to call another percholate up, which takes
this means the that loop itself takes

O(|V + |E|)|2

O(|V |log(|V |) + |E|log(|V |)) = O(|E|log(|V |)) |E|
O(|V |log(|V |))

O(|V log(|V |))|2

O(|V |log(|V |))
O(|E|)

O(log(|V |))
O(|E|log(|V |))

Data Chart
the same as the one for unweighted graph

Vertex Known Dv/Distance Pv/Previous

T 0 N/A

T 2

T 3

T 1

T 3

T 6

T 5

V1

V2 V1

V3 V4

V4 V1

V5 V4

V6 V7

V7 V4

5/10/2020 Final Review

localhost:8888/nbconvert/html/Dropbox/SEAS2019/Spring Semester/Data Structure/Final/Final Review.ipynb?download=false 16/18

In []: void dijkstra(Vertex s){
 for each Vertex v{
 v.dist = INFINITY;
 v.known = false;
 }

 s.dist = 0;

 // so this happens |V| times
 while(there is an unknown vertex){
 // if you find the min by scanning through the list/linear scanning
 // then this is also |V|
 Vertex v = smallest known vertex

 v.known = true;

 // this loop goes IN TOTAL |E| times
 for each Vertex w adjacent to v{
 if(!w.known){
 // the next step/edge's cost
 DistType cvn = cost of edge from v to w;

 // if we did find something smaller
 if(v.dist + cvn < w.dist){
 // update w
 // in this version, w.dist = v.dist+cvw works the same

 // this is useful, because there is actually ANOTHER way of doing this
 decrease(w.dist to v.dist+cvn);
 w.pv = v;
 }
 }
 }
 }

}

Minimum Spannig Tree (MST)
For an undirected graph, produce an acyclic tree that is the subset of the graph that spans all of the Vertices (Spanning), and it needs to have a minimum
sum in terms of the edges included (minimum)

In general, there are two algorithms that we can use. In fact, both are Greedy Algorithms

Prim's algorithm
Kruskal's algorithm

Prim's Algorithm

this is pretty much the same as Dijkstra's Algorithm, but since we are constructing a tree, the difference is

known means whether if we have included that vertex into the tree
Dv means the current smallest distance we currently know to bring that vertex into the graph (not cumulative)
Pv vertex that achieves the shortest distance in the Dv field

Vertex Known Dv Pv

T 0 N/A

F -

F -

F -

F -

F -

F -

V1

V2 ∞

V3 ∞

V4 ∞

V5 ∞

V6 ∞

V7 ∞

Kruskal's Algorithm

instead of looking at vertices, it looks at edges
and realize that, if you have vertices, and you have edges without creating a cycle, you must have completed the graphN N − 1

5/10/2020 Final Review

localhost:8888/nbconvert/html/Dropbox/SEAS2019/Spring Semester/Data Structure/Final/Final Review.ipynb?download=false 17/18

Algorithm
first we need to put every edge into a PriorityQueue
then, we call deleteMin() to pick out the current minimum edge
now, we take the Greedy Step so that that connection must be the solution
now, before we incorporate the edge, we need to check if there is a cycle
if there is a cycle, reject the edge and continue
if not, add the edge to ouput and continue
breaks when there is edges in the listN − 1

Cycle Detection Algorithm
to solve this problem, we need to use Disjoined Set

if any two or more vertices live in the same set, then it means that here exists a path that connects them
therefore, if we want to further add an edge that connects two vertices in the same set, then we know we created a cycle

in general, you have two operatios to use on a disjoined set
find(), which looks up that vertex and see which set it belongs to

this will be used to see whether two vertices are in the same set
union(), which takes two set and merge them into one set

this unions two sets if they are disconencted

Cost Analysis
the worst case analysis gives the algorithm performs

in the dense graph, we would have
in the sparce graph, we would have

So in general, we would have , which is the same RunTime for the Dijkstra's Algorithm, and hence the same time for Prim's
Algorithm

O(|E|log(|E|))

O(|E|log(|E|)) = O(|V log(|V)) = O(2|V log(|V |)) = O(|V log(|V |))|2 |2 |2 |2

O(|V |log(|V |))
O(|E|log(|V |))

In []: // we return a list of Edges which we could use to construct the Minimum Spanning Tree
ArrayList<Edge> kruskal(List<Edge> edges, int numVertices){

 DisjoinedSets ds = new DisjoinedSets(numVertices);
 PriorityQueue<Edge> pq = new PriorityQueue<>(edges);
 List<Edge> mst = new ArrayList<>();

 // once we have N-1 edges, we finish
 // in the worst case, this could happen |E| times
 while(mst.size()!= numVertices -1){
 // notice that this is O(log(|E|))
 // and the rest of the code here is actually constant time
 Edge e = pq.deleteMin();

 // since edge has two vertices, e= (u,v), we need get both sets out
 // by using the method ds.find()
 SetType uset = ds.find(e.getu());
 SetType vset = ds.find(e.getv());

 // if uset is equal to vset, then it means there is a cycle as they are in the same set
 if(uset != vset){
 // Accept the edge
 mst.add(e);
 ds.union(uset,vset);
 }
 }

}

P vs NP

nondeterministic polynomial time, are the set of problems that can be solved in a linear time if there exists a kind of Oracle, which tells you exactly how
to solve a problem

or, you can say that these are the problems whose solution can be verified in polynomial time
a polynomial problem means you can definitely solve it in a polynomial time

therefore, it also means that you can verifty in polynomial time as well

5/10/2020 Final Review

localhost:8888/nbconvert/html/Dropbox/SEAS2019/Spring Semester/Data Structure/Final/Final Review.ipynb?download=false 18/18

Terminologies

NP-complete is a subset of NP problems, that are the hardest problems in NP, such that
if you can solve a NP-complete problem, then you have solved every NP problem as well
therefore, it means that if you solved a NP-Complete problem in Linear Time, then you solved (not verify) every NP problem, and hence the
equivalence can be proven P = NP

NP-hard, is technically not a NP problem, as often we are not sure if we can even verify in polynomial time. However, they do resemble a similar for to
NP, and they are harder than NP-complete.

Example NP-Complete Problem

A problem that can be verified at polynomial time, but may not solved at Polynomial Time

consider the Traveling Salesman Problem (TSP) (this is the NP-Complete version)
and you have a Complete Weighted Graph, namely you have an undirected edge from every vertext to every other vertex

the goal is that you need to find a simple cycle that visits all the vertices
a simple cycle means that you can only visit each vertex exactly once, except for the starting vertex which you have to go back to
AND we need to have the length of the total path satisfying , where is an arbitrary value that I can specify
however, notice that this version does not require a minimal cost!

length < k k

Now, if you try to solve the problem, you will in some sense have to evaluate every possible path, before determining whether a path satisfying the requirement
exists or determining the minimum path

However, if I give you an oracle that tells you a solution path, then I can verify it in polynomial time by simply comparing it with .

however, notice that this would not work if you have the version that the task is to find the shortes path/optimal path, then it might not even by an NP at
all. This type of problems are known as NP-hard

k

