MATH3027 ODE
Week 1 - Introduction to ODE
Differential Equation Def:
- A differential equation is any relation involving ht derivatives of an unknown function, the function itself, and known quantities
Application
Applications of ODE include
- Chemistry:
- models for chemical reactions
- Physics:
- naturally comes with Newton’s second law, planetary motion, and much more
Applications of PDE include:
- Physics:
- electricity and magnetism, heat dissipation
For example:
- Question:
-
Solution:
\[p(t) = Ae^{rt+b}\]
Another example would be:
For example:
-
Question:
-
Solution:
Goal of Studying ODE
The main goal is of course finding all solutions of a give ODE. Ideally, we would want to
- closed form expression
- solution containing standard functions such as $cosine$.
- possible cases include:
- linear equations
- separable equations
However, what if
- analyze its existence and uniqueness of solutions
- study its quantitative behavior, such as steady state or run-away
Linear ordinary differential equations and the method
First consider the example of:
\[x^\prime (t) = ax(t)\]Now consider the more general
where:
- primitive means antiderivative
ODE Equations
ID | Title | Condition/Definitions | Key Steps | Theorem/Solution Equation | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Variable coefficient and inhomogeneous: | \(x'(t)=a(t)x(t)+f(t)\) | RHS does not have $x(t)$:\(\frac{d}{dt}(e^{-\phi(t)}x(t))=e^{-\phi(t)}(x'(t)-\phi'(t)x(t))=e^{-\phi(t)}f(t)\) | \(x(t)=e^{\phi(t)}(\int e^{-\phi(t)}f(t) dt + c)\) | ||||||||||||||||
\(\phi=\int a(t)dt\) | ||||||||||||||||||||
2 | Separable | $x’(t)=f(x_{(t)})g(t)$ | RHS does not have $x(t)$: \(\frac{d}{dt}\phi (x) = \phi'(x)x'(t)=\frac{x'(t)}{f(x)}=g(t)\) | \(x(t)=\phi^{-1}(\int g(t)dt +c)\) | ||||||||||||||||
\(\phi'(x) = \frac{1}{f(x)}\) | ||||||||||||||||||||
3 | Linear System | \(\vec{x}'(t) = A \vec{x}(t)\) | \(e^{At} = \sum\limits_{k=0}^{\infty}\frac{t^k}{k!}A^k\) | \(\vec{x}=\vec{x}_0 e^{At}\) | ||||||||||||||||
4 | Euclidean and Operator Norm of Matrix | Euclidean Norm: $$ | A | = \sqrt{\sum\limits_{i,j=1}^{n}a_{ij}}$$ | $$ | A | _{op} \le | A | \le \sqrt{n} | A | _{op}$$ | |||||||||
Operator Norm: $$ | A | _{op} = max{ | A\hat{x} | , | \hat{x} | =1}$$ | ||||||||||||||
5 | Existence of \(e^A\) | Using a Cauchy Sequence, so that $$ | S_m - S_l | \le \epsilon\(for large\)l\(and\)m \ge l$$. | \(\left|\sum\limits_{k=l+1}^{\infty}\frac{1}{k!}A^k\right| \le \sum\limits_{k=l+1}^{\infty}\frac{1}{k!}\left| A^k\right|_{op} \le \sum\limits_{k=l+1}^{\infty}\frac{1}{k!}\left| A\right|_{op}^k\) | Limit exists for \(e^A\) | ||||||||||||||
6 | Property of \(e^{A+B}\) | If \(A\) commutes with \(B\) | \(e^{A+B}=e^A e^B\) | |||||||||||||||||
7 | Alternative formula for \(e^A\) | \(e^A=\lim_{m\to \infty} (I+\frac{1}{m}A)^m\) | ||||||||||||||||||
8 | Derivative of \(e^{tA}\) | \(e^{hA}-I=hA+\sum\limits_{k=0}^{\infty}\frac{h^{k+2}}{(k+2)!}A^{k+2}\) | \(\frac{d}{dt}e^{tA}=Ae^{tA}\) | |||||||||||||||||
9 | Inhomogeneous Linear System | \(\vec{x}'(t)=A\vec{x}(t)+\vec{f}(t)\) | \(\vec{x}(t)=e^{tA}\left(\int\limits_0^t e^{-sA}f(s) ds + \vec{x}_0\right)\) | |||||||||||||||||
10 | Diagonal Matrix Exponentials | \(e^{tD}\), \(D\) is diagonal | \(e^{tD}= \begin{bmatrix}e^{t\lambda_1} & 0 & 0 &... \\ 0 & e^{t\lambda_2} & 0 & ...\\... & ... & ... & ...\\... & ... &... &e^{t\lambda_1}\end{bmatrix}\) | |||||||||||||||||
11 | Diagonalizable Matrix Exponential | \(e^{tA}\), \(A=SDS^{-1}\) | \(e^{tA}=Se^{tB}S^{-1}\) | |||||||||||||||||
12 | Nilpotent Matrix | \(N^m=0\), \(N\) is nilpotent | \(A^m\vec{x}=\lambda^m x = 0\) | All eigenvalues of \(N\) is 0 | ||||||||||||||||
13 | LN Decomposition | \(A=L+N\) for any \(A\), and \(L,N\) commute | \(L\vec{x}=\lambda_i \vec{x}\), for \(\vec{x}\in ker(A-\lambda_iI)^{\nu_i}\) | |||||||||||||||||
\(N^{max(\nu_i)}\vec{x}=(A-\lambda_i I)^{max(\nu_i)}\vec{x}=0\), for \(\vec{x}\in ker(A-\lambda_iI)^{\nu_i}\) | ||||||||||||||||||||
14 | Asymptotic Behavior of Linear System | \(\vec{x}'=A\vec{x}\), all $Re(\lambda)<0$ | $e^{tA}\vec{x}=e^{t(\lambda_i I)}e^{t(A-\lambda_i I)}\vec{x}=e^{t(\lambda_i I)}\sum\limits_{k=0}^{\nu_i-1}\frac{t^k}{k!}(A-\lambda_i I)^k \vec{x}$ | $\lim\limits_{t \to\infty} \vec{x}_0e^{tA} \to 0$ | ||||||||||||||||
$\lambda$ are the generalized eigenvalues, $\vec{x}$ in generalized eigenspace | and $e^{t(\lambda_i I)}\to 0$ much faster as all $Re(\lambda)<0$ | |||||||||||||||||||
15 | Asymptotic Behavior of Inhomogeneous System | \(\vec{x}'=A\vec{x}+f(t)\), all $Re(\lambda)<0$, and $f(t)$ has period $\tau$ | Start with $\bar{x}(t_\tau = \tau)=\bar{x}(t_\tau = 0)$, get $(e^{\tau A}-I)\bar{x}_0 = \int\limits_0^\tau e^{-sA}f(s)ds$ | There is a unique solution $\bar{x}(t_{\tau})$that is also period $\tau$ | ||||||||||||||||
$\lambda$ are the generalized eigenvalues, $\vec{x}$ in generalized eigenspace | $\vec{x}’(t)-\bar{x}’(t_{\tau})=A(\vec{x}(t)-\bar{x}(t_{\tau}))$. Therefore: $\vec{x}(t)-\bar{x}(t_{\tau}) = e^{At}(\vec{x}(t)-\bar{x}(t_{\tau}))$, and $e^{At}\to 0$ if all $Re(\lambda)<0$ | There can be other solutions $\vec{x}(t)$, but they will tend to $\bar{x}(t_{\tau})$ as $t \to \infty$ | ||||||||||||||||||
16 | Asymptotic Behavior of Inhomogeneous System | This applies for both homogenous and inhomogeneous, as you can write them all in the form of $\vec{x}=e^{At}\vec{x}_0$ | same as (14), but take case 1 being $\vec{x}\in ker(p_{-}A)$, and the second case the opposite | $e^{tA}\vec{x}0 \to 0$ if $\vec{x}_0 \in ker(p{-}A)$, and $t\to \infty$ and $e^{tA}\vec{x}0 \to 0$ if $\vec{x}_0 \in ker(p{+}A)$ and $t \to -\infty$ |
||||||||||||||||
Assumes no purely imaginary eigenvalues | $ker(p_{-}A)$ is the generalized eigenspace for negative (real part) generalized eigenvalues, and vice versa | |||||||||||||||||||
17 | Asymptotic Behavior of Inhomogeneous System | Accounting $Re(\lambda)=0$ case | Split the total space into three spaces, one for each $Re(\lambda<0)$, $Re(\lambda=0)$, $Re(\lambda>0)$ | $e^{tA}\vec{x}\to 0$ if $\vec{x}\in ker(p_{-}A)=ker(A-\lambda_i I)^{\nu_i}$, for all $Re(\nu_i)<0$ | ||||||||||||||||
Do the same analysis as (16) and (14) | $e^{tA}\vec{x}$ is bounded if $\vec{x}\in ker(p_{-}A)\bigoplus ker(A-\lambda_jI)$, for all $Re(\nu_j)=0$ | |||||||||||||||||||
18 | Cauchy-Lipschitz Theorem | $\vec{x}’(t)=\vec{F}(\vec{x})=\begin{bmatrix}f_1(\vec{x})\f_2(\vec{x})\…\f_n(\vec{x})\end{bmatrix}$ | If we take a small time interval $\delta$ away from the initial condition at $t_0$, there $\exists$ a solution. | That solution will be the convergence of Picard Iterates: $\vec{x_k}(t)=\vec{x}0+\int\limits_0^t \vec{F}(\vec{x}{k-1})dt$ | ||||||||||||||||
Then we can bound: $\vert \vert \vec{F}(\vec{x})\vert \vert \le M$ and $\vert \vert D\vec{F}(\vec{x})\vert \vert _{op}\le L$, where $D\vec{F}$ would be the Jacobian on $\vec{F}$ |
||||||||||||||||||||
19 | Convergence of Picard Iterates | $\vert \vert \vec{x}_{k+1}-\vec{x}_k\vert \vert \le 2^{-k}r$ | Then define $\vec{x}=\lim\limits_{k\to\infty}\vec{x}_k$ | Solution can be obtained from Picard Iterates: $\vec{x}=\lim\limits_{k\to\infty}\vec{x}_k$ | ||||||||||||||||
Calculate $\vert \vert \vec{x}m-\vec{x}_l\vert \vert \le \sum\limits{k=l+1}^m \vert \vert \vec{x}{k}-\vec{x}{k-1}\vert \vert \le \sum\limits_{k=l+1}^m 2^{-k+1}r \le 2^{-l+1}r$Now send $m\to \infty$, still bounded by $2^{-l+1}r$ | ||||||||||||||||||||
Therefore, $\vec{F}(\vec{x})=\lim\limits_{k\to\infty}\vec{F}(\vec{x}k)$, hence the solution $\lim\limits{k\to\infty}\vec{x}k=\lim\limits{k\to\infty}(\vec{x}0+\int\limits_0^tF(x{l-1}(s))ds)=\vec{x}_0+\int\limits_0^tF(x(s))ds)=\vec{x}$ | ||||||||||||||||||||
20 | Uniqueness of Solution | $\vec{x}’(t)=\vec{F}(\vec{x})$ | Suppose there is another solution $\vec{y}$. Then bound $$ | \vec{F}(\vec{x})-\vec{F}(\vec{y}) | \le L | \vec{x}-\vec{y} | $$, $\vec{F}$ is Lipschitz continuous | The solution $\vec{x}$ is unique if $\vec{F}$ is Lipschitz continuous, and $\vec{x}$ is continuously differentiable. | ||||||||||||
i.e. Lipschitz continuous function is limited in how fast it can change | ||||||||||||||||||||
Compute $$\frac{d}{dt} | \vec{x}-\vec{y} | ^2 \le 2L | \vec{x}-\vec{y} | ^2$$, hence $\frac{d}{dt}e^{-2Lt} |
\vec{x}-\vec{y} | ^2\le0$ | ||||||||||||||
Therefore, if $\vec{x}(0)-\vec{y}(0)=0$, for all $t$, $\vec{x}-\vec{y}=0$ | ||||||||||||||||||||
21 | Unique Maximal Domain for Solution | $\begin{cases}\vec{x}’(t)=\vec{F}(\vec{x}) \ \vec{x}(0)=\vec{x}_0\end{cases}$ | This complements the previous theorem (20), saying the solution will uniquely solve up to some time $\beta$ | If $\beta < \infty$, then it must be that $\vert \vert \vec{x}\vert \vert \to \infty$ as $t\to \beta$ | ||||||||||||||||
Proof by contradiction that , if $\beta < \infty$, yet your solution is still bounded in a set $U =\R^n$. This cannot be because then you can extend a time $\delta$ by theorem (18). | ||||||||||||||||||||
22 | Definition of Flow | For each point $(x_0,t_0)\in \Omega$, we have: | ||||||||||||||||||
$\Phi(x_0,t_0)=\phi_{t_0}(x_0)=x(t_0)$ meaning a solution of the ODE starting from point $x_0$, and is defined up to time $t_0$. |
||||||||||||||||||||
23 | Bounded Neighborhood Solution (Part 1) | If we have another initial condition $y_0$ s.t. $\vert \vert x_0 - y_0\vert \vert \le e^{-Lt_1}r$, where $t_1$ is the closed upper bound for maximal defined time interval |
$\vert \vert \Phi(x_0, t)-\Phi(y_0, t)\vert \vert \le 2e^{Lt}\vert \vert x_0 - y_0\vert \vert$where $0\le t\le t_1$. | |||||||||||||||||
$\Phi(x_0, t)$ and $\Phi(y_0,t)$, namely two solutions up to the same time yet starting from a different initial condition | Also hints at possible chaotic behavior as $t\to \infty$ exploded $e^{Lt}$ | |||||||||||||||||||
24 | Interval for Neighborhood Solution | If we have another initial condition $y_0$ s.t. $\vert \vert x_0 - y_0\vert \vert \le e^{-Lt_1}r$, where $t_1$ is the closed upper bound for maximal defined time interval |
$\Phi(y_0,t)$ is defined at least in the same interval of $\Phi(x_0,t)$, where $0 \le t \le t_1$ | |||||||||||||||||
25 | Bounded Neighborhood Solution (Part 2) | If we have another initial condition $y_0$ s.t. $\vert \vert x_0 - y_0\vert \vert \le e^{-Lt_1}r$, where $t_1$ is the closed upper bound for maximal defined time interval |
$\vert \vert \Phi(x_0, t)-\Phi(x_0, t_0)\vert \vert \le M\vert t-t_0\vert$ | $\vert \vert \Phi(x_0, t_0)-\Phi(y_0, t)\vert \vert \le 2e^{Lt}\vert \vert x_0 - y_0\vert \vert +M\vert t_0-t\vert$ where we only have an initial point $(x_0,t_0)$, and we bound another solution up to time $t\in[0,t_1]$ | ||||||||||||||||
26 | Differentiability of Flow and Linearized Solution | Given an ODE: $\vec{x}’(t)=\vec{F}(\vec{x})$, and its Flow: $\vec{x}(t)=\Phi(x_0,t)$ | The final goal is to show that $\lim\limits_{y \to x_0} \frac{\vert \varphi_{t_0}(x_0)-\varphi_{t_0}(y)-M(t_0)(x_0-y)\vert }{\vert x_0-y\vert } = 0$,where we get $M(t_0)$ being the derivative on the “initial condition $x_0$” (the only other variable is time, whose derivative would be the trivial). | $\vec{x}(t)=\Phi(x_0,t)$ is differentiable at $\vec{x}0$ which is given by $D\phi{t_0}(x_0)=M(t_0)$ | ||||||||||||||||
Let $A(t)\equiv D\vec{F}(\vec{x})$ | $M$ is defined by the solution to the ODE: $M’(t)=A(t)M(t)$, $M(0)=I$ | |||||||||||||||||||
27 | Existence of $M$ | Let $A(t)\equiv D\vec{F}(\vec{x}):[0,T]\to \R^{n\times n}$ be a continuous function | Proven using Picard Iterates, constructing $M(t) := \lim\limits_{k \to \infty} M_k(t)$ | There exists a $M$ that solves the ODE $M’(t)=A(t)M(t)$, and $M(0)=I$ | ||||||||||||||||
Induction proof that, if $M_0(t)=I$, $\vert A(t)\vert {op}\le L$ for all $t\in[0,T]$, and $M{k+1}(t) = I + \int\limits_0^t A(s) M_k(s) \, ds$ | ||||||||||||||||||||
Then $\vert M_k(t)-M_{k-1}(t)\vert {\text{op}} \leq \frac{(Lt)^k}{k!}$, hence convergence of $\vert M(t)-M_l(t)\vert _{\text{op}} \leq \sum\limits{k=l+1}^\infty \vert M_k(t)-M_{k-1}(t)\vert {\text{op}} \leq \sum\limits{k=l+1}^\infty \frac{(Lt)^k}{k!}$ | ||||||||||||||||||||
28 | True in general | make $A$ into an upper-triangle matrix $B$ by $A=SBS$ | $det(e^{tA}) = e^{t\cdot tr(A)}$ | |||||||||||||||||
Expand the exponent, and show $det(A)^k = det(B)^k = tr(B)^k = tr(A)^k$ | ||||||||||||||||||||
29 | $\frac{d}{dt}det(M(t))\vert _{t_0} = tr(A(t_0))det(M(t_0))$ | |||||||||||||||||||
30 | If $M$ is differentiable | Follows from above (29) | $det(M(t))=det(M(0)\cdot e^{\int_0^ttr(A(s))ds})$ | |||||||||||||||||
31 | Liouville Theorem | If $F$ is a divergence free vector field (for the nonlinear differential system) | $detD\varphi_{t_0}(x_0)=detM(t_0)=detM(0)=1$ | The flow $\varphi_{t_0}$ preserves volume (i.e. two solution $\varphi_{t_0}(x_0),\varphi_{t_0}(y_0)$ occupies the same volume in space) | ||||||||||||||||
32 | If given an equilibrium point $\bar{x}$ | For that equilibrium point, $M’(t)=AM(t)$, $A$ independent of $t$ | For the solution $\bar{x}$, $M(t)=e^{At}$ | |||||||||||||||||
33 | Stability of Equilibrium Point | For an equilibrium point $\bar{x}$, if $DF(\bar{x})$ has eigenvalues with only negative real parts | $\bar{x}$ is asymptotically stable | |||||||||||||||||
34 | Stability of Equilibrium Point | For an equilibrium point $\bar{x}$, if $DF(\bar{x})$ has eigenvalues with at least one positive real parts | $\bar{x}$ is not stable | |||||||||||||||||
35 | Stability of Equilibrium Point | For an equilibrium point $\bar{x}$, if $DF(\bar{x})$ has eigenvalues with at least one purely imaginary | inconclusive | |||||||||||||||||
36 | Lyapunov’s criterion for stability | If we can find a function $L$, such that: $L(\bar{x})$ is a strict local minimum, and $\nabla L(x) \cdot F(x) \le 0$ for all $x$ near $\bar{x}$ |
Show that $L(\varphi_t(x_0))$ is monotonously decreasing by showing its derivative being $\le 0$ | $\bar{x}$ is stable | ||||||||||||||||
37 | If we can find a function $L$, such that: $L(\bar{x})$ is a strict local minimum, and $\nabla L(x) \cdot F(x) < 0$ for all $x$ near $\bar{x}$ |
$\bar{x}$ is asymptotically stable | ||||||||||||||||||
38 | Stability of Gradient System | If $F=-\nabla V$, and $\bar{x}$ is a local min for $V$ | Show that $V$ is a Lyapunov Function, hence $<\nabla V(x), F(x)> \le 0$ | $\bar{x}$ is a stable equilibrium point | ||||||||||||||||
If the function $V$ is found to be $\nabla V(x)\cdot F(x) < 0$ | $\bar{x}$ is an asymptotically stable equilibrium point | |||||||||||||||||||
39 | Stability of Hamiltonian System | If $F=J \nabla H$, and $\bar{x}$ is a local min for $H$ | Same as above, but have $<\nabla H(x), F(x)> = 0$ | $\bar{x}$ is only a stable equilibrium point (not asymptotically stable) | ||||||||||||||||
$J=\begin{bmatrix}0 & 1& \ -1 & 0 & \ & & 0 & 1\ & & -1 & 0\&&&&… & \&&&&&0&1\&&&&&-1&0\end{bmatrix}$ | ||||||||||||||||||||
40 | Property of Hamiltonian System | Show that $\frac{d}{dt}H(x)=0$ | The quantity $H$ is preserved | |||||||||||||||||
If stuck, first show that $\vec{w} \cdot J\vec{w}=0$ | ||||||||||||||||||||
Tricks
Tricks for Computing Matrix Exponentials with Inhomogeneous Term
Basically, we you are dealing with terms such as $e^{tA}\vec{f}$, and $A$ is diagonalizable:
- you should decompose the vector $\vec{f}$ into the eigenvectors
- this will be always used since for non-diagonalizable $A$, you can use $A=L+D$, where $L$ is diagonalizable.
For example, in HW4:
- Question:
- Trick: